Functional gap junctions are not required for muscle gene activation by induction in Xenopus embryos
نویسندگان
چکیده
Muscle gene expression is known to be induced in animal pole cells of a Xenopus blastula after 2-3 h of close contact with vegetal pole cells. We tested whether this induction requires functional gap junctions between vegetal and animal portions of an animal-vegetal conjugate. Muscle gene transcription was assayed with a muscle-specific actin gene probe and the presence or absence of communication through gap junctions was determined electrophysiologically. Antibodies to gap junction protein were shown to block gap junction communication for the whole of the induction time, but did not prevent successful induction of muscle gene activation. The outcome was the same whether communication between inducing vegetal cells and responding animal cells was blocked by introducing antibodies into vegetal cells alone or into animal cells alone. We conclude that gap junctions are not required for this example of embryonic induction.
منابع مشابه
Muscle activity and the loss of electrical coupling between striated muscle cells in Xenopus embryos.
The gap junctions between embryonic striated muscle cells are lost during development. The time course of their elimination has been examined with electrophysiological techniques in myotomes of Xenopus laevis embryos. Gap junctions were detected by the passage of electronic current or the fluorescent dye, Lucifer Yellow, from one muscle cell to another. These tracers only spread to neighboring ...
متن کاملUpregulation of Connexins 30 and 32 Gap Junctions in Rat Hippocampus at Transcription Level by Chronic Central Injection of Lipopolysaccharide
Background: Gap junctions composed of connexins (Cx) are functional in cell defense by propagation of toxic/death molecules to neighboring cells. Hippocampus, one of the brain regions with particular vulnerability to damage, has a wide network of gap junctions. Functional response of astrocytic Cx30 and neuronal Cx32 to hippocampal damage is unknown. Methods: We infused lipopolysaccharide (LPS)...
متن کاملExpression of connexin 30 in Xenopus embryos and its involvement in hatching gland function.
Connexins are a family of proteins that assemble to form gap junction channels. Cell-cell communication through gap junctions mediates many important events in embryogenesis, including limb patterning, lens physiology, neuronal function, left-right asymmetry, and secretion from gland tissue. We studied the expression of connexin 30 (Cx30) in the Xenopus embryo and find that it is expressed in t...
متن کاملExpression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملA role for cytoplasmic determinants in mesoderm patterning: cell-autonomous activation of the goosecoid and Xwnt-8 genes along the dorsoventral axis of early Xenopus embryos.
Although an induction event is required for the formation of mesoderm in Xenopus embryos, it is not clear that this induction is wholly sufficient to give rise to a correctly patterned mesodermal layer. We have studied the expression of the two genes, goosecoid and Xwnt-8, in Xenopus gastrulae in which cell-cell communication, and therefore mesoderm induction, has been prevented by frequent cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 104 شماره
صفحات -
تاریخ انتشار 1987